AI SOC Security Threat analysis using MCP Server
- • Most MCP protocol features implemented (34/40)
- • Room for improvement in GitHub community
- • Good dependency choices (18/20)
- • Moderate deployment maturity (5/10)
- • Documentation (8/8)
- • Archestra MCP Trust score badge is missing
{
"mcp-ai-soc-sher-local-python": {
"command": "python",
"args": [
"-c",
"import os; os.environ[\"OPENAI_API_KEY\"] = \"your-api-key-here\"; from mcp_ai_soc_sher.local import LocalMCPServer; server = LocalMCPServer(); server.start()"
],
"env": {
"OPENAI_API_KEY": "your-api-key-here"
}
},
"mcp-ai-soc-local-stdio-sse": {
"command": "mcp-ai-soc",
"args": [
"--type",
"local",
"--stdio",
"--sse"
],
"env": {}
},
"mcp-ai-soc-local-stdio": {
"command": "mcp-ai-soc",
"args": [
"--type",
"local",
"--stdio"
],
"env": {}
},
"mcp-ai-soc-local-sse": {
"command": "mcp-ai-soc",
"args": [
"--type",
"local",
"--sse"
],
"env": {}
},
"mcp-ai-soc-remote": {
"command": "mcp-ai-soc",
"args": [
"--type",
"remote"
],
"env": {}
}
}MCP AI SOC Sher
A powerful AI-driven Security Operations Center (SOC) Text2SQL framework based MCP Server (Local and Remote) for converting natural language Prompts to SQL queries dynamically, with integrated security threat analysis and monitoring.
Features
- Text2SQL Conversion: Convert natural language queries to optimized SQL
- Multiple Interfaces: Support for STDIO, SSE, and REST API
- Security Threat Analysis: Built-in SQL query security analysis
- Multiple Database Support: Connect to SQLite or Snowflake databases
- Streaming Responses: Real-time query processing feedback
- SOC Monitoring: Security Operations Center monitoring capabilities
Installation
pip install mcp-ai-soc-sher
Quick Start
# Set your OpenAI API key
import os
os.environ["OPENAI_API_KEY"] = "your-api-key-here"
# Use as local server
from mcp_ai_soc_sher.local import LocalMCPServer
server = LocalMCPServer()
server.start()
# Or run from command line
# mcp-ai-soc --type local --stdio --sse
Command Line Usage
# Run local server with STDIO interface
mcp-ai-soc --type local --stdio
# Run local server with SSE interface
mcp-ai-soc --type local --sse
# Run remote server with REST API
mcp-ai-soc --type remote
Configuration
Create a .env file with your configuration:
OPENAI_API_KEY=your_openai_api_key_here
MCP_DB_URI=sqlite:///your_database.db
MCP_SECURITY_ENABLE_THREAT_ANALYSIS=true
See the documentation for all configuration options.
Example
import json
import requests
# Query the server
response = requests.post(
"http://localhost:8000/api/sql",
headers={"Content-Type": "application/json", "X-API-Key": "your-api-key"},
json={
"query": "Find all suspicious login attempts in the last 24 hours",
"optimize": True,
"execute": True
}
)
# Process the response
result = response.json()
print(f"SQL Query: {result['sql']}")
if result['results']:
print("Results:")
for row in result['results']:
print(row)
Security Features
- Rule-based and AI-powered SQL query security analysis
- Detection of potential SQL injection attacks
- Sensitive table access monitoring
- Configurable security levels and actions
License
MIT License with Additional Conditions. Copyright (c) 2025 Akram Sheriff.
See LICENSE for details.
Contributing
Contributions are welcome! Please see CONTRIBUTING.md for guidelines.
[](https://archestra.ai/mcp-catalog/akramiot__mcp_ai_soc_sher)MCP AI SOC Sher
A powerful AI-driven Security Operations Center (SOC) Text2SQL framework based MCP Server (Local and Remote) for converting natural language Prompts to SQL queries dynamically, with integrated security threat analysis and monitoring.
Features
- Text2SQL Conversion: Convert natural language queries to optimized SQL
- Multiple Interfaces: Support for STDIO, SSE, and REST API
- Security Threat Analysis: Built-in SQL query security analysis
- Multiple Database Support: Connect to SQLite or Snowflake databases
- Streaming Responses: Real-time query processing feedback
- SOC Monitoring: Security Operations Center monitoring capabilities
Installation
pip install mcp-ai-soc-sher
Quick Start
# Set your OpenAI API key
import os
os.environ["OPENAI_API_KEY"] = "your-api-key-here"
# Use as local server
from mcp_ai_soc_sher.local import LocalMCPServer
server = LocalMCPServer()
server.start()
# Or run from command line
# mcp-ai-soc --type local --stdio --sse
Command Line Usage
# Run local server with STDIO interface
mcp-ai-soc --type local --stdio
# Run local server with SSE interface
mcp-ai-soc --type local --sse
# Run remote server with REST API
mcp-ai-soc --type remote
Configuration
Create a .env file with your configuration:
OPENAI_API_KEY=your_openai_api_key_here
MCP_DB_URI=sqlite:///your_database.db
MCP_SECURITY_ENABLE_THREAT_ANALYSIS=true
See the documentation for all configuration options.
Example
import json
import requests
# Query the server
response = requests.post(
"http://localhost:8000/api/sql",
headers={"Content-Type": "application/json", "X-API-Key": "your-api-key"},
json={
"query": "Find all suspicious login attempts in the last 24 hours",
"optimize": True,
"execute": True
}
)
# Process the response
result = response.json()
print(f"SQL Query: {result['sql']}")
if result['results']:
print("Results:")
for row in result['results']:
print(row)
Security Features
- Rule-based and AI-powered SQL query security analysis
- Detection of potential SQL injection attacks
- Sensitive table access monitoring
- Configurable security levels and actions
License
MIT License with Additional Conditions. Copyright (c) 2025 Akram Sheriff.
See LICENSE for details.
Contributing
Contributions are welcome! Please see CONTRIBUTING.md for guidelines.