Back to Catalog

MCP_AI_SOC_Sher

akramIOT/MCP_AI_SOC_Sher
🔗 Latest commit:e23ecc6
🕒 Updated:Sep 9, 2025, 01:05 PM
Python
Security

AI SOC Security Threat analysis using MCP Server

MCP Trust Score
Based on our comprehensive evaluation criteria
🤖 Evaluated by gemini-2.5-flashFix
Trust Score59/100
GitHub Metrics
Repository statistics and activity
⭐ GitHub Stars:2
👥 Contributors:1
📋 Total Issues:0
📦 Has Releases:Yes
🔧 Has CI/CD Pipeline:No
Configuration
Configuration example extracted from README.md for Claude Desktop and other clients.
🤖 Evaluated by gemini-2.5-flashFix
{
  "mcp-ai-soc-sher-local-python": {
    "command": "python",
    "args": [
      "-c",
      "import os; os.environ[\"OPENAI_API_KEY\"] = \"your-api-key-here\"; from mcp_ai_soc_sher.local import LocalMCPServer; server = LocalMCPServer(); server.start()"
    ],
    "env": {
      "OPENAI_API_KEY": "your-api-key-here"
    }
  },
  "mcp-ai-soc-local-stdio-sse": {
    "command": "mcp-ai-soc",
    "args": [
      "--type",
      "local",
      "--stdio",
      "--sse"
    ],
    "env": {}
  },
  "mcp-ai-soc-local-stdio": {
    "command": "mcp-ai-soc",
    "args": [
      "--type",
      "local",
      "--stdio"
    ],
    "env": {}
  },
  "mcp-ai-soc-local-sse": {
    "command": "mcp-ai-soc",
    "args": [
      "--type",
      "local",
      "--sse"
    ],
    "env": {}
  },
  "mcp-ai-soc-remote": {
    "command": "mcp-ai-soc",
    "args": [
      "--type",
      "remote"
    ],
    "env": {}
  }
}
MCP Protocol Support
Implemented MCP protocol features
🤖 Evaluated by gemini-2.5-flashFix
Tools:
Prompts:
Resources:
Sampling:
Roots:
Logging:
STDIO Transport:
HTTP Transport:
OAuth2 Auth:
Dependencies
15 dependencies
Libraries and frameworks used by this MCP server
🤖 Evaluated by gemini-2.5-flashFix
Add Quality Badge
Show your MCP trust score in your README
Trust Score Badge
[![Trust Score](https://archestra.ai/mcp-catalog/api/badge/quality/akramIOT/MCP_AI_SOC_Sher)](https://archestra.ai/mcp-catalog/akramiot__mcp_ai_soc_sher)
README.md

MCP AI SOC Sher

A powerful AI-driven Security Operations Center (SOC) Text2SQL framework based MCP Server (Local and Remote) for converting natural language Prompts to SQL queries dynamically, with integrated security threat analysis and monitoring.

Features

  • Text2SQL Conversion: Convert natural language queries to optimized SQL
  • Multiple Interfaces: Support for STDIO, SSE, and REST API
  • Security Threat Analysis: Built-in SQL query security analysis
  • Multiple Database Support: Connect to SQLite or Snowflake databases
  • Streaming Responses: Real-time query processing feedback
  • SOC Monitoring: Security Operations Center monitoring capabilities

Installation

pip install mcp-ai-soc-sher

Quick Start

# Set your OpenAI API key
import os
os.environ["OPENAI_API_KEY"] = "your-api-key-here"

# Use as local server
from mcp_ai_soc_sher.local import LocalMCPServer

server = LocalMCPServer()
server.start()

# Or run from command line
# mcp-ai-soc --type local --stdio --sse

Command Line Usage

# Run local server with STDIO interface
mcp-ai-soc --type local --stdio

# Run local server with SSE interface
mcp-ai-soc --type local --sse

# Run remote server with REST API
mcp-ai-soc --type remote

Configuration

Create a .env file with your configuration:

OPENAI_API_KEY=your_openai_api_key_here
MCP_DB_URI=sqlite:///your_database.db
MCP_SECURITY_ENABLE_THREAT_ANALYSIS=true

See the documentation for all configuration options.

Example

import json
import requests

# Query the server
response = requests.post(
    "http://localhost:8000/api/sql",
    headers={"Content-Type": "application/json", "X-API-Key": "your-api-key"},
    json={
        "query": "Find all suspicious login attempts in the last 24 hours",
        "optimize": True,
        "execute": True
    }
)

# Process the response
result = response.json()
print(f"SQL Query: {result['sql']}")
if result['results']:
    print("Results:")
    for row in result['results']:
        print(row)

Security Features

  • Rule-based and AI-powered SQL query security analysis
  • Detection of potential SQL injection attacks
  • Sensitive table access monitoring
  • Configurable security levels and actions

License

MIT License with Additional Conditions. Copyright (c) 2025 Akram Sheriff.

See LICENSE for details.

Contributing

Contributions are welcome! Please see CONTRIBUTING.md for guidelines.

MCP_AI_SOC_Sher MCP Server | Documentation & Integration | Archestra